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Few people of attainments take easily to a plan of self-improvement.
Some discover very early their perfection cannot endure the insult.
Others find their intellectual pleasure lies in the theory, not the prac-
tice. Only a few stubborn ones will blunder on, painfully, out of the

luxuriant world of their pretensions into the desert of mortification
and reward.

Patrick White
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In this tract we are concerned with combinatorial optimization
|Lawler, 1976; Papadimitriou & Steiglitz, 1982], the search for optima
of functions of discrete variables. Combinatorial optimization prob-
lems are nowadays ubiquitous in such diverse areas as, for example,
design of algorithms [Aho, Hopcroft & Ullman, 1974|, of integrated
circuits |[Breuer, 1972] and operations research [Wagner, 1975].

An instance of a combinatorial optimization problem is formalized
as a pair (R,C), where R is the finite - or possibly countably infi-
nite - set of configurations (also called configuration space or solution
space) and C a cost function, C : R — R, which assigns a real number
to each configuration. For convenience, only minimization problems
are considered (which can be done without loss of generality). Thus,
the problem is to find a configuration 15 € R, for which C takes its
minimum value, i.e. such that

Copt = C(20) = min C(z), (1.1)
t€R

where C,,; denotes the minimum cost value.
When dealing with a combinatorial optimization problem II, there
are two ways to go. One can try to construct either an optimiza-
tion algorithm for II, i.e. an algorithm that returns a globally mini-
mal configuration for every instance of II, or an approximation algo-
rithm, i.e. an algorithm that merely returns a configuration for each
instance [Garey & Johnson, 1979|. Preferably, the latter algorithm
should have the property that for all instances the returned configu-



ration is “close” to a globally minimal configuration.

The reason why many combinatorial optimization problems are tack-
led by constructing approximation rather than optimization algo-
rithms is related to the fact that many combinatorial optimization
problems are N P-hard, or that the deciston version of many com-
binatorial problems is N P-con (Garey & Johnson, 1979|. For
such problems it is commonly believed that no algorithm can be con-
structed that solves each instance of the problem to optimality with
an amount of computational effort bounded by a polynomial function
of the input length' of such an instance. Indeed, it would be a ma-
jor breakthrough in complexity theory if a polynomial-time algorithm

could be found for an N P-complete problem, since in that case all
N P-complete problems would be solvable in polynomial time.
Furthermore, the distinction between N P-hard problems and prob
lems solvable in polynomial time seems to be closely related to t ne dis
tinction between hard and easy problems. Computational expemence
has increased evidence for this relation: though there is, ot course,
the possibility of such contrasts as an O (1.001™) exponentlal time al-
gorithm and an 0 (n'®) polynomial-time algorithm, these kinds of
complexities hardly ever seem to occur in practice [Cook, 1983; John-
son & Papadimitriou, 1985|.

The aforementioned facts have led to the belief that large N P-hard
combinatorial optimization problems cannot be solved to optimality
in acceptable amounts of computation time. A more reasonable goal
then is to find an approximation algorithm that runs in low-order
polynomial time and has the property that final configurations are
“close” to globally minimal ones. For many combinatorial optimiza-
tion problems such algorithms are nowadays available, but usually
they suffer from the fact that they are only applicable to the par-
ticular problem they are designed for (in this connection, the notion
tailored algorithm is used). As soon as a new combinatorial optimiza-
tion problem arises, a new algorithm has to be constructed. General
approximation algorithms, able to find near-optimal configurations
for a wide variety of combinatorial optimization problems, are rare.
The simulated annealing algorithm, the subject of this tract, is such a

I The input length is a formal measure of instance size |Garey & Johnson, 1979].



generally applicable approximation algorithm.

The simulated annealing algorithm can be viewed as a randomized
version of an iterative improvement algorithm?. The application of an
iterative improvement algorithm presupposes the definition of configu-
rations, a cost function and a generation mechantsm, i.e. a simple pre-
scription to generate a transition from one configuration to another.
The generation mechanism defines a neighbourhood R; for each config-
uration ¢, consisting of all configurations that can be reached from 7 in
a single transition. Iterative improvement is therefore also known as
netghbourhood search or local search |Papadimitriou & Steiglitz, 1982].
Alternatively, instead of defining a generation mechanism, one can de-
fine a netghbourhood structure, i.e. a description of the neighbourhood
of each configuration. In many cases, it is then implicitly assumed
that the generation mechanism is such that each transition from a
configuration to one of its neighbours is generated with equal proba-
bility.

The iterative improvement algorithm can be formulated as follows.
Starting off at a given configuration, a sequence of trials is generated.
In each trial a configuration is selected from the neighbourhood of the
current configuration. If this neighbouring configuration has a lower
cost, the current configuration is replaced by this neighbour, otherwise
another neighbour is selected and compared for its cost value. The
algorithm terminates when a configuration is obtained whose cost is
no worse than any of its neighbours.

Iterative improvement algorithms possess the following disadvantages:

e By definition, iterative improvement algorithms terminate in the
first local minimum encountered; generally, such a local mini-
mum deviates substantially in cost from a global minimum.

¢ The returned local minimum depends on the initial configura-
tion, for the choice of which generally no guidelines are available.

e In general, it is not possible to give an upper bound on the
computation time. For instance, the worst-case complexity of
the iterative improvement algorithm for the travelling salesman

2Strictly speaking, an iterative improvement algorithm need not be completely
deterministic itself, since the neighbourhood can be searched 1n a random order.
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problem based on Lin’s 2-change strategy [Lin, 1965] is an open
problem, see [Johnson, Papadimitriou & Yannakakis, 1985| and

the references therein.

It should be clear, however, that iterative improvement does have the
advantage of bemg genera.lly a,ppllca,ble the main 1ngred1ents, viz.

tlon tlme ‘For i _
tra,velhn sale 1an em. Kern f
certain class of problem instances the expected computatlon time is
bouned by a ‘polynomial function of the input length of the instance.
Because of the small computational cost of one run of an iterative 1m-
provement algorithm, it is customary to execute the algorithm for a
large number of initial configurations, drawn independently from the

configuration space R. In this way, the first two of the disadvantages
mentioned can be removed.

We recall that the reason why iterative improvement algorithms termi-
‘nate in the first local minimum they encounter is that only transitions
corresponding to a decrease in cost are accepted by the algorithm
Alternatively, we might think of an algorithm which also accepts, In
some limited way, transitions corresponding to an increase in cost.
Simulated annealing is an example of the latter approach: in addi-
tion to cost-decreasing transitions, cost-increasing transitions are ac-
cepted with a non-zero probability, which gradually decreases as the
algorithm continues its execution. Ever since its introduction, inde-
pendently by Kirkpatrick, Gelatt & Vecchi (1983 and Cerny 11985/,
the algorithm has attracted much attention, partly because it is based
on an intriguing combination of ideas from completely different and
at first sight totally unrelated fields of science, and partly because it
is claimed by many authors not to exhibit any of the aforementioned
disadvantages of the iterative improvement algorithm, whilst main-
taining its advantages. Thus, it is often asserted that the simulated
annealing algorithm is a generally applicable, high-quality combina-
torial optimization tool.

The major contribution of this tract is threetold:
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1. An implementation of the algorithm is described which provably
leads to polynomial-time execution.

2. Extensive computational evidence is presented to support the
aforementioned assertion that simulated annealing is a generally
applicable, high-quality optimization tool. At the same time it is
shown not to be a panacea, since it is often not able to compete
with tailored algorithms for a particular problem.

3. A novel (Bayesian) approach to the analysis of the algorithm is
presented.

The tract is organized as follows. The algorithm itself is extensively
discussed in chapters 2 and 3. In chapter 2, after an introduction to
the algorithm and the analogy on which it is based, simulated an-
nealing is mathematically described as the generation of a sequence
of homogeneous Markov chains. Necessary and sufficient conditions
are derived to ensure that asymptotically the algorithm finds a glob-
ally minimal configuration with probability 1. Thus, these conditions
relate to the asymptotic behaviour as an optimization algorithm.

In chapter 3, the finite-time behaviour of simulated annealing is ad-
dressed. Since the aforementioned necessary and sufficient conditions
cannot be satisfied in finite time, the finite-time behaviour of simu-
lated annealing is that of an approximation algorithm. The problem
then is to find values for certain parameters of the algorithm (referred
to as a cooling schedule) that ensure that near-optimal configurations
are returned. A cooling schedule which tries to achieve the latter
by closely imitating the aforementioned asymptotic behaviour is de-
scribed in chapter 3. This schedule is compared with other schedules
from the literature on the basis of numerical results obtained by solv-
ing instances of the graph partitioning and travelling salesman prob-
lems.

The quality of an approximation algorithm can be judged on its per-
formance in terms of the quality of the configuration returned by the
algorithm and the computation time needed by the algorithm to find
that configuration (for the moment, we discard other criteria such as
ease of implementation, flexibility and simplicity). When theoretical
results with respect to these criteria are lacking, as is largely the case
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with simulated annealing, one has to resort to numerical tests of the
quality of an algorithm by running the algorithm on a large set of rep-
resenta,twe problem mstances and measur1ng computatlon times and
h tests are described in cha.pter

o run»; ng mmula.ted anneal-

., the job shop sc ed ul ing

m a Bayesian point
Markov chain is seen

cost function a ming
a pro ba u ﬂ ity d 1S trlb ut ion on t he vai ues of these un nown parameters
> prior distribution) and given the outcome of the

nt (t he sequence of conﬁguratlons resulting from the gen-
Markov ch aln) ~ we use Bayes’s theorem to derive the

S hown to predi

next Markov chain and secondly is used to compute the (a posteriori)
expectation of the minimum value of the cost function. Furthermore,
the Bayesian information is used to derive optimal rules for choosing
some of the parameters of a cooling schedule.

The tract is ended with some conclusions and remarks.




The simulated annealing algorithm [Kirkpatrick, Gelatt & Vecchi,
1983; Cerny, 1985] originates from the analogy between two problems:
that of finding the ground state of a solid and that of finding a glob-
ally minimal configuration in a combinatorial optimization problem.
In condensed matter physics, annealing denotes a physical process by
which, if carried out sufficiently slowly, the ground state of a solid can
be found. The simulated annealing algorithm takes its name from the
fact that it is based on an algorithm to simulate (parts of) the an-
nealing process.

The physical process denoted by annealing is one in which a solid in
a heat bath is heated up by increasing the temperature of the heat
bath to a value at which all particles of the solid randomly arrange
themselves in the liquid phase, followed by cooling through slowly
lowering the temperature of the heat bath. In this way, the particles
arrange themselves in the low-energy ground state, provided the cool-
Ing 1s carried out sufficiently slowly. Starting off at a given value of
the temperature, the cooling phase of the annealing process can be
described as follows. At each temperature value T, the solid is allowed
to reach thermal equilibrium. In thermal equilibrium the probability

of occurrence of a state with energy E 1Is given by the Boltzmann

7
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distribution:

Pr{E = E} = ! - - eXp (___.._..E._) , (2.1)

where Z(T) is the partition function and kp the Boltzmann constant.

The factor exp ( ka) is known as the Boltzmann factor. As the
temperature decreases, the Boltzmann distribution concentrates on
the low-energy states and finally, when the temperature approaches
zero, only the minimum-energy states have a non-zero probability of
occurrence. However, if the cooling is too rapid, i.e. if the solid is not
allowed to reach thermal equilibrium at each temperature value, de-
fects can be ‘frozen’ into the solid resulting in metastable amorphous
structures instead of the low-energy crystalline structure. If the tem-
perature of the heat bath is lowered instantaneously the pa.rtlcles are
frozen into one of the metastable amorphous structures. This process
is known as quenchmg.

There is some similarity between a solid and a combinatorial opti-
mization problem: in both cases there are many degrees of freedom
(the positions of the particles of the solid, the configurations in an op-
timization problem) and in both cases some global quantity has to be
minimized (the energy of the solid, the cost function in combinatorial
optimization). The observation of this analogy is the first step in the
construction of the simulated annealing algorithm, the next step is to
extend this analogy to the A algorithm.

To simulate the evolution to thermal equilibrium of a solid, Metropo-
lis, Rosenbluth, Rosenbluth, Teller & Teller (1953| proposed a Monte
Carlo method, which generates sequences of states of the solid in the
following way. Given the current state of the solid, characterized by
the positions of its particles, a small, randomly generated, perturba-
tion is applied, i.e. a small displacement of a randomly chosen particle.
If the perturbation results in a lower energy state of the solid, then the
process is continued with the new state. If AE > 0, then the prob-
ability of acceptance of the perturbed state is given by exp(— ,f;;,)
This rule for accepting new states is referred to as the Metropolis
eriterton. Guided by this criterion, the solid eventually evolves into
thermal equilibrium, i.e. after a large number of perturbations, using
the aforementioned acceptance criterion, the probability distribution
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of the states approaches the Boltzmann distribution, given by (2.1).
In statistical mechanics this Monte Carlo method, which is known as
the Metropolis algorithm, is a frequently used method to estimate av-
erages or integrals by means of random sampling techniques; see for
example Binder’s review article [1978].

T'he Metropolis algorithm can also be used to generate sequences of
configurations of a combinatorial optimization problem. In that case,
the configurations assume the role of the states of a solid while the cost
function C and the control parameter ¢ assume the roles of energy and

temperature, respectively. The simulated annealing algorithm can be
viewed as a sequence of Metropolis algorithms evaluated at decreasing
values of the control parameter. It can thus be described as follows.
Initially, the control parameter is given a large value and a sequence
of trials is generated using the same generation mechanism as in the
iterative improvement algorithm. Thus, in each trial, a configuration
7 is generated by choosing at random an element from the neighbour-
hood of the current configuration ¢. This corresponds to the small
perturbation in the Metropolis algorithm. Let AC;; = C(3) — C(1),
then the probability of configuration 5 being the next configuration
in the sequence equals 1, if AC;; < 0, and exp(---—é-%i), if AC;; > 0
(the Metropolis criterion). Thus, there is a non-zero probability of
continuing with a configuration with higher cost than the current
configuration. This sequence of trials is continued until equilibrium
1s reached, i.e. until the probability distribution of the configurations

approaches the Boltzmann distribution, now given by

Pr{configuration = i} &= gi(c) = ch) . eXp (-—-—- Cii)) , (2.2)

where Q(c) is a normalization constant depending on the control pa-
rameter ¢, being the equivalent of the aforementioned partition func-
tion.

The control parameter is lowered in steps until it approaches 0, with
the system being allowed to approach equilibrium for each step by
generating a sequence of trials in the previously described way. After
termination, the final ‘frozen’ configuration is taken as the solution of
the problem at hand.

Thus, as with iterative improvement, we have again a generally appli-



cable approximation algorithm: configurations, a cost function and a
neighbourhood structure are the only prerequisites to be able to apply
simulated annealing. '
Comparing iterative improvement and simulated annealing, it is ap-
parent that the situation where the control parameter in the simulated
annealing algorithm is set to O corresponds to a version of iterative
improvement (it is not iterative improvement per se, because in an
iterative improvement approach the neighbouring configurations are
not necessarily examined in random order). In the analogy with con-
densed matter physics, setting the control parameter to O corresponds
~ to the aforementioned quenching process.

On the other hand, simulated annealing is a generalization of iter-
ative improvement in that it accepts, with non-zero but gradually
decreasing probability, deteriorations in cost. It is not clear, however,
whether it performs better than a repeated application of iterative
improvement for a number of different initial configurations: both al-
gorithms converge asymptotically to a globally minimal configuration
of the problem at hand. For simulated annealing asymptotic conver-
gence is proved in the next section; for repeated application of iterative
improvement it is obvious that convergence is obtained for N — oo,
where N denotes the number of initial configurations for which the
algorithm is applied, if only for the fact that a global minimum is
encountered as an initial configuration with probability 1 as N — oo.
However, Lundy & Mees [1986] construct an example of a combinato-
rial optimization problem, for which, in expectation, both repeated
application of iterative improvement and a complete enumeration of
all configurations of the problem take an order of magnitude more
elementary operations to reach the global minimum than simulated
annealing. In chapter 4, extensive comparisons are made between the
two algorithms on the basis of a large set of numerical experiments
and computational evidence is presented for the assertion that if both
algorithms are allowed the same amount of computation time, simu-
lated annealing returns substantially better configurations (in terms
of cost) than repeated application of iterative improvement.
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Simulated annealing can be viewed as an algorithm that continuously
attempts to transform a configuration into one of its neighbours. Such

an algorithm can mathematically be described by means of a Markov
chain: a sequence of trials, where the outcome of each trial only de-
pends on the outcome of the previous trial [Feller, 1950]. In the case
of simulated annealing, trials correspond to transitions. Since the ac-
ceptance of a transition depends only on the cost values of the current
and generated configuration, it is clear that the outcome of a tran-
sition (the new configuration) only depends on the outcome of the
previous transition (the current configuration).

A Markov chain is described by means of a set of conditional proba-
bilities P;;(k) for each pair of outcomes (z,7); P;;(k) is the probability
that the outcome of the k-th trial is 5, given that the outcome of the
(k — 1)-th trial is . Let X (k) denote the outcome of the k-th trial,

then we have:
Py (k) = PriX(k) =7 | X(k — 1) = i}. (2.3)

If the conditional probabilities do not depend on k, we write P;; in-

stead of P;;(k). The corresponding Markov chain is then called ho-
mogeneous, otherwise it is called tnhomogeneous.

Returning to simulated annealing, we note that P;;(k) denotes the
probability that the k-th transition is a transition from configuration
1 to configuration 3 and that X (k) is the configuration obtained after
k transitions. In view of this, P;;(k) is called the transition probability
and the |R| X | R |-matrix P(k) the transition matriz.

The transition probabilities depend on the value of the control pa-
rameter ¢, the analogue of the temperature in the physical annealing
process. Thus, if ¢ is kept constant, the corresponding Markov chain
iIs homogeneous and its transition matrix P = P(c) is given by:

G,"J‘(C)A,‘j (C) \V/j 75 2
Rj(c) — R , (2.4)

1— > Galc)Aule) j =1,
=1l
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where the generation probability G;;(c) denotes the conditional prob-
ability of generating configuration j, given that the current configura-
tion is ¢, and the acceptance probability A;;(c) denotes the conditional
probability of accepting the transition from configuration ¢ to con-
figuration j. The corresponding matrices G(c) and A(c) are called
the generation and acceptance matriz, respectively. As a result of the
definition in (2.4), P(c) is a stochastic matriz, i.e. a matrix satistying
2.; Bij (¢) =1 for all 1.

We remark that in the initial formulation of the algorithm, the gen-
eration matrix is defined by

Gij(c) = Gij =

{ [ Ri |7 if € R (2.5)

0 elsewhere,

i.e. G is independent of ¢ and corresponds to a uniform distribution on
the neighbourhoods, while A;;(c) is given by the Metropolis criterion,
1.e.

exp (— =2 if C(5) > C(d)

1 if C(7) < C(z). (2:6)

Aij(c) = {

As pointed out before, the control parameter ¢ is decreased during
the course of the algorithm. We distinguish two mechanisms to carry
out this decrement:

e a decrement of ¢ after each transition, resulting in an algorithm,
which can be described by a single inhomogeneous Markov chain
(the tnhomogeneous algorithm);

e a decrement of ¢ after a number of transitions, resulting in an
algorithm which can be described by a sequence of homogeneous
Markov chains, each generated at a fixed value of ¢ (the homo-
geneous algorithm). Note that we do not exclude the possibility
that c is decreased after an infinite number of transitions.

The distinction is not as clear-cut as the foregoing suggests: the in-
homogeneous algorithm can be considered as a special case of the ho-

mogeneous algorithm (the sequence of homogeneous Markov chains
collapses into one inhomogeneous Markov chain), but the reverse is
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also true if we think of a zero-decrement of ¢ in between the transitions
of the homogeneous Markov chains. However, the results with respect
to asymptotic convergence of the homogeneous algorithm, which are
derived in the next section, presuppose that the length of each homo-
geneous Markov chain is taken to infinity. Consequently, these results
do not pertain to the inhomogeneous algorithm.

In this section we consider arbitrary generation and acceptance ma-
trices and derive conditions on these matrices to ensure asymptotic
convergence of both the homogeneous and the inhomogeneous algo-
rithm to a globally minimal configuration.

For the homogeneous algorithm we derive sufficient conditions on G(¢)
and A(c) that ensure that if the Markov chains are all of infinite length
and if the limit ¢ | O is taken, then the algorithm converges in prob-
ability to a globally minimal configuration. For the inhomogeneous
algorithm we briefly discuss conditions that are both necessary and
sufficient. These conditions not only relate to the matrices A(c) and
G(c) but also to the way the limit ¢ | 0 is taken.

Essential to the convergence proof for the homogeneous algorithm is
the fact that, under certain conditions, the stationary distribution of
a homogeneous Markov chain exists. The stationary distribution is
defined as the vector q whose :-th component is given by |Feller, 1950]

6 = lim Pr{X(k) =i | X(0) = 5}, (2.7)

for an arbitrary 3.
If q exists, we have that

lim Pr{X(k) = 2}

k— 00

= lim > Pr{X(k)=1|X(0) = s}  Pr{X(0) = j}

k—o00 T
J

— Zq,—Pr{X(O) = J} = ¢;. (2.8)
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Thus, the stt1~ary distribution is the probability distribution of the
onfigurations after an infinite number of trials (transitions).

The proof of theorem 2.1 is now based on the following arguments.
First, it is shown that under certain conditions on the matrices A(c¢)

and G(c) the stationary distribution g(c) exists for all ¢ > 0. Next, it

is shown tha,t under additional conditions q(c) converges to a uniform

distribution on the set of globally minimal configurations.

Suppose thc followmg conditions on the matrices G(c) and A(c) are

Ve >0, Vi,7€ R 3p > 1,300, A1,.. ., L, ER (1= Ao, 7 = Ap)
Grarpgi(€¢) >0, k=0,1,...,p— 1; (2.9)
Ve>0, Vi,7€ R :Gji(c) = Gij(c); (2.10)

Ve >0, Vi,9, k€ R :
Cl) < OU) < Ck) = An(c) = Ay(e)An(e);  (2.11)

Ve>0, Vi,j € R:C(1) > C(5) = Ai;i(c) = 1; (2.12)
Ve>0, Vi, ;€ R:C(2) < C(j) = 0 < A;i(c) <1; (2.13)
Vi, 9 € R : C(i) < C(]) = limlo A,‘j (C) = (. (2.14)

-1 .
lgfgl (e) = { LRON ' 'eflszefihfzt (2.15)
where
¢i(c) = lim Pr{X(k) =1 c}, (2.16)
and

PriX(k)=17| X(k - 1) =1; ¢} = Gij(c)Aii(e), k=1,2,... (2.17)
Proof

According to Theorem 2 - Corollary II in chapter 15 of [Feller, 1950],

a finite Markov chain! has a unique stationary dlstrlbutmn if the
Markov chain is:

1:

i.e. a Markov chain defined on a finite set of configurations.
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1. srreductble, i.e. if for all pairs of configurations (7, ) there is a

positive probability of reaching 7 from 7 in a finite number of
transitions:

Vi, dp:1<p<oo A (PF);; > 0; (2.18)

2. aperiodic, i.e. if for all configurations 7 € R, the greatest common
divisor of all integers n > 1, such that

(P");; >0 (2.19)
1s equal to 1.

According to the same theorem, the stationary distribution q of a

finite, irreducible and aperiodic Markov chain is uniquely determined
by the following equations:

Vi :g; > 0, Zq, = 1, (220)

Vi:g =) ¢q;P;. (2.21)
j

We use condition (1) and the fact that A;;(c) > 0 for all 7,7 € R
(conditions (4) and (5)) to establish irreducibility:

(Pp)ij (c) = Z Py, (c)Pr,(c) . .. Plp—lj(c)

(ll ,...,lpm]_)

= ) Ga,(c)Au,(c)...Gy,_,i(c)Ai,_,;(c)
(ll.:f“:lp--l)
> GiAl (C)A,*Al (C) ‘. G)\p_lj(c)AAp-—lj (C) > (. (2.22)
To establish aperiodicity, we use the fact that an irreducible Markov
chain is aperiodic if [Romeo & Sangiovanni- Vincentelli, 1985]:

d1€ R : Py > 0. (2.23)

Clearly,
Ve >0 di. € Ropty Je & Ropt : Gy, ;. (c) > 0, (2.24)
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otherwise condition (1) would not be satisfied for ¢ € Ropt, J & Ropt-
Using condition (5), we find that (2.24) implies:

Ve >0 31:,3,]..3 c R: Aic.‘ic (C) < 1A Gicjc (C) > 0. (2.25)

Thus, using the fact that A;;(¢) < 1 for all 1,5 € R (conditions (4)
and (5)), we find

| R | 'R |

2 Giu)Aii(e) = D Giale)Aiu(e) + Gijlc)Ai(c) <
I=1,l7i, I=1,1%ic,5e

| R | | R | R

D Gia(e) + Gigle) = D> Giale) < 2 Giale) =1, (2.26)
=114, 5. 1=1,l31, I=1

and, consequently,

Pi,,i,,(c) =1 — Z G{J(C)A;J(C) > 0. (2.27)

I=1,l5#1,

Next, we prove that the stationary distribution q(c) (¢ > 0) is given
” (©
N S . 11 C 2.28
Vie R : g(c) g A (€) ( )
for an arbitrary ip € Rope.
First, we remark that q(c), as defined by (2.28), clearly satisfies (2.20).
Let IN denote the denominator in (2.28). We have that, for all 1,

1
2. %5(@QPi(e) = D Ai(€)Gji(e)Asile)+
J i#LC()<C ()

2 4i(0)Gji(e)Aji(c) + gi(c) Piile) =
§#4,8(5)>C(5) _;

Z ”ﬁAini (C)Gij’ (c) + . Z dy (C)Gij (c) + gi(c) P i(c) =
. Cls) ™ i#1,C(7)>C (1)

g:(c) 2. Gyl + > 4i()Gij(e) + gi(e) Pule) (2-29)

§7i,0(5)<C(4) j#4,0(3)>C(5)
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and
gi(c) Pii(c) =
g (c) (1 — > Gii(0)Aijle) = 2. Gij(e)Ay(e) | =
i#4,0(5)<C(6) #4,0(3)>C(5)
1
gi(c) —alc) > Gile)— 2 “N“Aiof(C)Gij(c)Aij(C) =
j;ﬁi,C(j)SC(i) j#i,C(j))C(i)
gi(c)—ailc) > Giyle)— D gi(e)Gii(c).  (2.30)
j-‘/:i,C'(j)SC(i) j;l‘-‘i,C(j)>C(i)
Combining (2.29) and (2.30) yields
Vie R : Z Qj(C)Pji(C) — {; (C) (231)
;

Using (2.28) and conditions (4) and (6), we have:

lim g;(c) = lim ———2\") = Cfewtd o — | R, 0}, (2.32
Cﬁlq (C) 3]1:61 ZJER Ai(lj (C) EjERopt 1 I pt I XROPt( ) ( )

where xp_, is the characteristic function of R,,. In general, the
characteristic function x , of a set A is defined as follows:

. 1 ifz € A,
Xa(?) = { 0 elsewhere. (2:33)

Finally, combining (2.8) and (2.32) yields

1,}{{,1(,31,1?0 Pri{X(k) =1}) = | Ropt | X, (%) (2.34)

or
lim( lim Pr{X (k) € Ropt}) = 1. (2.35)
¢c]O k—o0 _ ]

A few remarks are appropriate at this point.

First of all, we note that condition (2) can be replaced by
Lundy & Mees, 1986]

lRal”l if 7 € R;

2.36
0 elsewhere, ( )

(2)' ViER:G;j:{
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In which case the stationary distributions are given by

R' A s\ C '
qi(c) — _.._......L._....‘.‘__Ii__..‘.ﬂ._..(__)___ (2_37)
2jer | Rj| Aigi(c)
In other words, it suffices to demand that G is either symmetric or
given by the uniform distribution on the neighbourhoods. If G is
both, it can be shown that there exists an integer S satisfying

VieR:|R;|=S (2.38)

In the following way. Take an arbitrary 7,7 € R, then condition (1)
implies that there are Ay,...,A,_; € R, such that

GAkAk-{-l = G)\k+11k > 0, k = O,...,p— 1, )\0 = 1, Ap == j (239)

Hence, | R)‘k ‘ mlRAk_H |, k:O,l,,,.,pﬂ*l a,nd ' R,‘ | - I Rj I

Secondly, it is easily verified that in the initial formulation of the
algorithm, conditions (3)-(6) are satisfied. The generation matrix is
given by (2.36); thus, according to the previous remark, condition (2)
is also satisfied. Consequently, one should only verify that condition
(1) is satisfied. Note that condition (1) states that the Markov chain
associated with the matrix G(c) is itself irreducible. If this is not the
case, l.e. if it is not possible for an arbitrary pair of configurations
(,7) to construct a finite sequence of transitions leading from ¢ to
J, we can still prove asymptotic convergence to a globally minimal
configuration if the following condition is satisfied:

(1)" Vi€ R IHo€ Ropty P> 1,h0,A1,-.0,0p € R (5= Aoyt0 = A,) 3
GA;,A;,.H(C) > 0, k = 0, 1, N | 1, (2.40)

.e. if for an arbitrary configuration ¢ it is possible to construct a finite
sequence of transitions leading from ¢ to a globally minimal configu-
ration 1o (this situation occurs when we study the job shop scheduling
problem in section 4.3). Note that by replacing 5 by 1, in (2.22) we
find that satisfaction of condition (1)’ implies that a similar condition
s satisfied for the matrix P(c). f

To prove asymptotic convergence in this case we introduce the no-
tions of a closed set and of recurrent and transient configurations
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[Feller, 1950]. A closed set S is a set of configurations such that
P;; = 0 whenever + € S and 7 ¢ S - in the case of an irreducible
chain the only closed set is the set of all configurations. A configura-
tion ¢ is called recurrent if the probability that the Markov chain ever
returns to @ is equal to 1, otherwise it is called transient. In every
chain the recurrent configurations can be uniquely divided into closed
sets S1,S2,..., 9k such that from any configuration of a given set all
configurations of that set and no other can be reached.? In addition to
the closed sets there is a set T of transient configurations from which
configurations in the closed sets can be reached (but not vice versa).
Now consider the sequence of configurations constituting the Markov
chain associated with P(c). There are two possibilities: either the
Markov chain starts in a transient configuration or it does not. In the

latter case, the configurations constituting the Markov chain all be-
long to the same closed set S, (k € {1,..., K}) - the Markov chain can
then be considered as a Markov chain with transition matrix Px(c),
where Py(c) is obtained from P(c) by deleting the rows and columns
from P(c) corresponding to configurations not belonging to S;. Note
that this Markov chain is aperiodic (this can be shown in the same
way as for the Markov chain associated with P(c)) and irreducible
(because of the properties of S;); furthermore, S, contains at least
one globally minimal configuration. The latter observation is an
immediate consequence of (2.40) and the definition of a closed set. In
other words, the proof of theorem 2.1 can be repeated with R replaced
by Sk.

If the Markov chain starts in a transient configuration, it will even-
tually ‘land’ [Feller, 1950] in a closed set Sk, k € {1,..., K}, though
it is not a priort known which one. The line of reasoning described

above can then be applied again.
We can make the preceding arguments more precise by introducing
the notion of a stationary matriz Q, whose elements ¢;; are defined

by

¢;; = lim Pr{X(k) = 7|X(0) = ¢}. (2.41)

k— 00

Ak B FriA

e

“We say that a configuration 7 can be reached from a configuration 2 if 3n : 1 <
n<oo A (P");; >0.
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Note that for an irreducible Markov chain, ¢;; does not depend on ¢ (cf.
(2.7)). Because the Markov chain associated with P(c) is aperiodic,
we can use the results in [Feller, 1950, chapter 15, sections 6-8| to
obtain |

gi; =

if j€T or ¢ € Sk, J & Sk, for some k € {1,...,K},
if 1,7 € S) for some k € {1,...,K},

ifteT, €S, forsomeke {1,...,K},

(2.42)

where z;, is the probability that the Markov chain, starting from the
transient configuration 1, eventually reaches the closed set S;.
From (2.42) we obtain, for a recurrent configuration 3 € S,

0< lim Pr{X(k) = j} = 2_ Pr{X(0) =1} - ¢;

tER

Aio.f (C)
Etesk Aiﬂl (C)

== (Z; Pr{X(0) =1t} z + Z; Pr{X(0) =<} ] -
Aiof(c)
= EIES;; Aiol(c) |

Using conditions (4) and (6) we find

Aipj(c)
lim —2——— =
cl0 EIESk Afol(c)

if 7 € Sk, 7 & Ropt- Consequently, lim,jo(limg—oo Pr{X (k) = 7}) =0
or any transient or non-globally recurrent configuration 7. In other
vords,

(2.43)

0, (2.44)

lim(lim Pr{X(k) € R,,,}) =1, (2.45)

cl0 k—oo

where R, , denotes the non-empty set of globally minimal recurrent

configurations.
In chapter 4, where applications of simulated annealing to several
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combinatorial optimization problems are discussed, we prove that ei-
ther condition (1) or condition (1)’ is satisfied for each of these prob-
lems.

Finally, we remark that theorem 2.1 does not pertain to the inhomo-
geneous algorithm, because it is implicitly assumed that an infinite
number of transitions is necessary to reach the stationary distribution
of each Markov chain. More precisely, it can be shown that the num-
ber of transitions necessary to approach the stationary distribution
arbitrarily closely is of exponential order (see section 2.4).

We now discuss briefly necessary and sufficient conditions for the in-
homogeneous algorithm to converge to a global minimum. The in-
homogeneous algorithm is described by an inhomogeneous Markov
chain, whose transition matrix P(k) (k= 1,2,...) is given by
V7 #1

- (2.46)

where the sequence {c;}, k = 1,2,... denotes the sequence of values
of the control parameter. A number of authors derive suflicient con-
ditions for asymptotic convergence of the inhomogeneous algorithm
to a global minimum, notably Geman & Geman (1984, Anily & Fed-
ergruen [1986|, Mitra, Romeo & Sangiovanni-Vincentelli [1985] and
Gelfand & Mitter [1985]. These derivations are all based on ergodic-
ity theorems for inhomogeneous Markov chains [Seneta, 1981].

Necessary and sufficient conditions are derived by Hajek [1986]. Ha-
jek’s result is restricted to the case where the generation matrix 1S
independent of ¢ and the acceptance matrix is given by (2.6) (the

Metropolis criterion). In order to formulate this result, we need two
definitions: '

Definition 2.1 [Hajek, 1986/
A configuration j is called reachable at height L from a configuration
1, if the following holds:

Ip > 1, Aoy A1y---s2p €E R (1= Ao, J = Ap):

GAkAk+1 > 0, k = 0,1,...,p— 1 (2.47)



and
C(M) <L, k=0,1,...,p.  (2.48)

Definition 2.2 [Hajek, 1986] |

The depth of a local minimum ¢ ¢s defined as the smallest number
d(z) such that there is a configuration § with C(3) < C(i) reachable at
height C (1) + d(i) from 1. If 1 is a global minimum, then by definition
d(z) = +oo.

The reader is referred to [Kern, 1986b| for a detailed discussion of
the notion depth. In particular, Kern considers the maximum depth
D of all local minima (cf. theorem 2.2). For several combinatorial
optimization problems, upper bounds on D are derived and it is shown
that the computation of D cannot be done in polynomial time, unless
P=NP.

Hajek’s result can be formulated as follows:

Theorem 2.2 [Hajek, 1986]

Suppose that the transition matriz is given by (2.46), where A(cy) is
given by (2.6) (the Metropolis criterion) and G(ci) = G satisfies the
following two conditions:

1. condition (1) of theorem 2.1;

2. for any real number L and any two configurations ¢ and 7, 1
1S rcachablc at hczght L from 3 if and only if 7 1s reachable at

jurthermore that the sequence {c;}, k = 1,... satisfies the

fol lowmg two conditions:
1. limk...,m Ce = 0; (2.49)
2. Ck __>___ Cki1, k = 1,2, c oo (2.50)

Then
lim Pri{X(k) € Rop} = 1, (2.51)

1of and only if |
o /[ D
> exp (____,_______) ~ oo (2.52)
k=1
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where D s given by

D = max {d(t) | t €Ropt,2 18 a local

2‘ n i

Again, a few remarks on this result are in order. First of all, we
note that the term exp(-—-—ﬁ-) relates to the probability of accepting
a transition which corresponds to an increase in the cost function of
value D.

Secondly, if ¢, is of the form

_ LU
 logk’

Ch k=1,2,..., (2.54)

for some constant I', theorem 2.2 implies that (2.51) holds if and only
if ' > D. Note that (2.54) is the expression for c¢; which results from
the necessary conditions derived in [Geman & Geman, 1984; Anily
& Federgruen, 1986; M Romeo & Sangiovanni-Vincentelli, 1985;

Mitra,
Gelfand & Mitter, 1985].

Finally, we remark that theorem 2.2 can also be applied to the homo-
geneous algorithm. If {cx}, kK = 1,2,... is the sequence of values of
the control parameter and L, the length of the k-th Markov chain of
the homogeneous algorithm, we define the sequence {~;}, [ =1,2,...

as follows:
M =¢y, 1 <1< Ly (2.55)

and
"nmck, Lk-—-1<l$Lka k:2,.... (2.56)

The homogeneous algorithm can now be thought of as an inhomo-
geneous algorithm with sequence of control-parameter values {v:},

l=1,2,....

In the previous section conditions are derived for the homogeneous as
well as the inhomogeneous algorithm to converge in probability to the
set of globally minimal configurations. In this section, we show that
the aforementioned conditions imply that both algorithms must be
allowed unlimited computation times. In addition, we derive results
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indicating that exponential-time behaviour is to be expected if the
asymptotic behaviour is to be approximated arbitrarily closely.

Let us first discuss the consequences of the results of the previous
section for the computation time of the homogeneous algorithm. In
this case, the requirement that the computation time be unlimited is
an immediate consequence of (2.7), which implies that each individual
Markov chain is of infinite length. At this stage it is appropriate to
make two further remarks on the speed of convergence of the proba-
bility distribution of the configurations to the stationary distribution.
Both remarks relate to the distance between the stationary distri-
bution and the probability distribution of the configurations after a
finite number of steps.

1. Consider an arbitrary irreducible, aperiodic and finite Markov
chain with transition matrix P and stationary distribution q.
Let the vector a(k) denote the probability distribution of the
configurations after k transitions. Hence, a(0) denotes the initial
probability distribution and

a(k) = (P*)"a(0), q= lim a(k). (2.57)

We are interested in ||a(k) — q||, for any finite k£ and in order
to say something about this quantity we use the following two
theorems from Seneta (1981| (theorem 2.3 is an abridged version
of the Perron-Frobenius theorem for primitive matrices).

Theorem 2.3 [Scncta, 1981 / .
Let P be a non-negative primitive® matriz. Then there exists a

real-valued eigenvalue r of P, which has the following properties:

(a) r is the largest eigenvalue of P (r > |\|, for any eigenvalue

A#r}

SA primai tw e matrix P ' is -. . matrix tor whic
BUCh t hat P M 15 St : 'Ct Y P‘E:*tl_e‘ | .
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L heorem 2.4 [ Seneta, 1981 /

Suppose the distinct etgenvalues o f a primitive matriz P a
7y A2y ...y A, where r > |A2| > |A3| DA |At|. Let s3 = mq — 1
where my 1s the multiplicity of A,. Then we have, as k — oo

Pk — T’k VT 1 o ( kS . l AZ | k) (2 . 58)

elementwise, where w and v are any positive right and left

ergenvectors, respectively, corresponding to r guaranteed by the-
orem 2.8, providing they are normed so that = 1.

Now suppose the matrix P is primitive and stochastic, i.e.
satisfies 3>_; P;; = 1 for all 7. According to theorem 2.3, the
largest eigenvalue r is equal to 1. Putting 1 for the vector with
unity in each position, we find P1 = 1 by the stochasticity of P.
Hence, 1 can be taken as the right eigenvector in theorem 2.4
and we have, as k — oo

P*=1-vT +0(k"-|X:]") (2.59)

elementwise, where v is the positive left eigenvector of P satis-
fying vI -1 =3, v; = 1. According to (2.20) and (2.21), v is the
unique stationary distribution q of the Markov chain associated
with P.

Consequently, for £k — oo
PE=1.-q7 + 0(k* - |23]%) (2.60)
elementwise, and
|aT (k) — ||, = ||aT(0)P* — @7, = O(k* - [Xs[").  (261)

Equation (2.61) bears on the homogeneous algorithm, because
the transition matrix P(c) is both stochastic and primitive. The
latter follows from the fact that an irreducible aperiodic matrix
is primitive [Seneta, 1981]. From (2.61) it is apparent that the

speed of convergence to the stationary distribution is determined
by the ‘second largest’ eigenvalue A;(c) of the transition matrix
P(c). However, for large matrices, such as the ones that occur in
problems to which simulated annealing is applied, it is virtually
impossible to compute A,.
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theorem provides an upper bound to the norm in

2. The following

Theorem 2.5 [Seneta, 1981/

Suppose the n X n-matriz P is a stochastic and regular®* matriz.
q be the unique stationary distribution associated with P

 let a be an arbitrary probability vector. Then for k > p(n),

vhere o(n) ts the number of distinct regular n X n-matrices with

elements in {0,1},

. l ‘&T pk _ qT | | . <2 (lc [e(n))—1 ’ (2 62)

gorithm, we remark

tochastic and irreducible and
we find

' ’ . . ) A & '
: _.,.'. .. ': - H
) ! & W

18 sufficient to ensure

In 3 ,
lnﬁ) . (2.64)

g t Madsen [1974], we may take

IR|*—3-] R|+ 3. Hence, (2.64) implies that to approx-
he stationary distribution arbitrarily closely, we need an
amount of transitions at least quadratic in the number of config-
urations. Since this number is usually some exponential function
of the size of the problem, (2.64) would typically result in an
exponential-time algorithm.

e P e

,
! TR S TITIR A T T R TR

uiar matrix 1s a stochastic matrix, whose essential indices form a single
¢ |Seneta, 1981]. It would lead us beyond the scope of this tract
his notion i1n more detail. It suffices to remark that a Markov chain

’_ ar transition matrix has a unique stationary distribution and that an
rreducible, aperiodic matrix is regular [Seneta, 1981]

&
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For the inhomogeneous algorithm, unlimited computation time is a
consequence of (2.49), (2.50) and (2.52): from (2.49) and (2.50) we
conclude that all ¢, are non-negative, whereas (2.52) implies that
there can be no integer K, such that ¢, = 0 for & > K (unless
D = 0, in which case there are no non-global local minima, so that
even iterative improvement always finds the global minimum). Hence,
cr > 0 for all £ and the limit in (2.49) is attained only after an infi-
nite number of transitions. Thus, the corresponding inhomogeneous
Markov chain is of infinite length.

For the inhomogeneous algorithm, results similar to (2.61) have been
obtained independently by a number of authors, notably Anily &
Federgruen [1986], Gidas [1985] and Mitra, Romeo & Sangiovanni-
Vincentelli [1985]. As an example we discuss the result of Mitra,
Romeo & Sangiovanni-Vincentelli [1985] .

Suppose the sequence {cx} (k =1,2,...) is given by (cf. (2.54))
. oo A
* 7 logk’

where A is the maximum difference in cost between any two configu-
rations : € R,5 € R; for which C(j5) > C(7) and r is given by

(2.65)

= min max d(z,7). (2.66)
Here, d(7,7) is the minimal number of transitions to reach ; from
t and R,,,, is the set of locally maximal configurations. Note that
r is an integer such that there is at least one non-locally maximal
configuration from which any other configuration can be reached in
no more than r transitions. If 7 is the uniform probability distribution
on the set of globally minimal configurations, then

aT (k) — 77|, = O (k=™ (2.67)
where a and b are given by
1, . . -
a = —(min min Gij) 5 (2.68)
and ;
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6 is the difference between C,,; and the next-to-least
lue. This bound is rather poor in the sense that if one works it

, particular P robiem one typically finds that the time required
arger than the number of configurations. For
elling salesman problem, for example, one cannot do
han estima g by n. Under the assumptlon that the

geneous algorlthm |
yoth lgorlthms behave as optimization
hey are an infinite number of transitions. Of

-an never be realized in any practical implementa-

on the number of elementary operations taken
. Such 0pera.t10ns are the transitions in the Markov
hains m r the hon us algorlthm and the steps in the control

1nev1table

configuration returned by the algorithm.



In this chapter, we discuss the behaviour of the homogeneous algo-
rithm in finite time on the basis of the notion of a cooling schedule, a
set of parameters determining the finite-time behaviour of the algo-
rithm. These parameters are chosen so as to imitate the asymptotic
behaviour of the homogeneous algorithm in polynomial time, thereby
losing any guarantees with respect to the optimality of the configura-
tion returned by the algorithm. We do not describe any approxima-
tions to the asymptotic behaviour of the inhomogeneous algorithm.
Such approximations are not reported in the literature, which is prob-
ably due to the fact that in practice it is virtually impossible to give
accurate approximations to the constant I' in (2.54). One resorts to
conservative estimates, see for example [Kern, 1986b|, which lead to

unnecessarily slow convergence of the algorithm [Geman & Geman,
1984; Lundy & Mees, 1986].

We recall from the previous chapter that the asymptotic behaviour of
the homogeneous algorithm is characterized by

29



an infinite number of transitions for each value of the control

an (infinite) sequence of values of the control parameter {cs},
tisfying lim ¢ = 0 and ¢; > O for all k.

k— 00

L = 1 g v oy DC

h value of the control pa-
s, a fi ;-..1te length of each homogeneous

ntrol na ‘ameter , INNOTE SpeC 1f-

arameter (a stop criterion).
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